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Abstract 

Relationships between geometries adopted by compounds, ML,,, with different coordination numbers are developed 
and stereochemical changes in coordination compounds are analysed in terms of these relationships. The atom-atom 
interaction model (AAIM) view of molecular geometry in covalent species ML, is used to quantify the discussion 
where required. The AAIM emphasises the importance of both M-L bond and GL interaction energies. 
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1. Introduction 

The classic valence shell electron pair repulsion 
scheme (VSEPR) [l] has been used with outstanding 
success as a simple guide to the stereochemistry of 
inorganic molecular compounds, but its application is 
limited because of its reliance on the stereochemical 
consequences of lone pairs of electrons. The attractive 
feature of VSEPR, namely, that detailed quantum 
calculations [2] are not required for each system studied, 
is retained by an alternative approach originally de- 
veloped by Bartell [3] for organic systems and later 
extended by Glidewell [4]. In this approach, the ge- 
ometry of a molecule, ML,, is interpreted in terms of 
a ‘non-bonded’ radius for an atom or group of atoms, 
L. It has achieved considerable success in the evaluation 
of bond angles and distances and has also been suc- 
cessfully applied to the prediction of rotational barriers 
in certain organic systems. Hyde [5] has developed a 
similar model for the study of crystals. 

One of the main attractions of these atom-atom 
approaches to molecular geometry is that they enable 
geometries to be visualised and the energetic conse- 
quences of stereochemical changes to be readily de- 
termined. We have previously developed a model [6], 

the atom-atom interaction model (AAIM), for deter- 
mining molecular geometry which extends the non- 
bonded radii approaches to include attractive inter- 
actions. The Bartell-Glidewell non-bonded radius de- 
fines the minimum distance between two atoms, with 
the magnitude of the non-bonded radius being due to 
the short range repulsion of overlapping electron clouds. 
Whether or not two atoms in a molecule are separated 
by that distance depends on the balance of all the 
repulsive and attractive forces between non-bonded 
atoms, subject to any constraints imposed by the bonds 
within the molecule. 

There are instances where bond strengths are sig- 
nificantly dependent upon the relative orientation of 
the ligands about the atom. In such cases, the li- 
gand-ligand interactions do not dominate the geometry 
adopted by the molecule. The simplest case of this 
kind is BeH, which would be bent if dominated by 
ligand-ligand attraction, but is in fact linear as the 
BeH bonds are far stronger for this geometry [6]. In 
this work, we assume bond strength is independent of 
orientation. However, it should be noted that we are 
not ignoring all electronic effects, since the ligand-ligand 
interactions are also determined by electrons. For tran- 
sition metal complexes, although the influence of elec- 
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tronic factors in, for example, d8 systems is well-es- 
tablished, they tend to determine the coordination 
number rather than dominate the ligand orientations. 
However, the underlying assumption of constant bond 
strengths must be remembered for all situations where 
the metal electron structure is not spherical. 

For practical purposes the AAIM is closely related 
to molecular mechanics, the main differences being 
that twist and bond angle force constants are not 
explicitly considered. Due to the flexibility of bonding 
modes for transition metals these omissions are usually 
not a problem for transition metal complexes [7]. The 
omission of bond angle constraints is, on the other 
hand, a positive advantage if one wishes to study 
reactions rather than only stable geometries, since the 
bond angle force constants are defined for the known 
stable reactants and products. Within the AAIM, the 
L-L non-bonded interactions account for the bond 
angle force constants of molecular mechanics. Appli- 
cation of the AAIM to reaction mechanisms is reported 
in ref. 8. 

The aim of this work is to develop a unified view 
for approaching two questions: (i) why do some mol- 
ecules adopt stable geometries which differ, to a greater 
or lesser extent, from the most regular shape possible 
for a given coordination number? and (ii) is there is 
a dominant factor determining the stereochemical 
changes - fluxionality and isomerisation - that many 
inorganic coordination complexes exhibit? In Section 
2, a brief discussion of the structural implications of 
varying ligand or metal sizes are discussed. Since metal 
size and M-L bond length are related, this discussion 
leads directly to the analysis of reactivity in Section 3. 

2. ML, stable geometries 

Within the AAIM, the stereochemistry of a covalent 
molecular species ML,, is seen to be governed primarily 
by the need to achieve the optimum M-L bond distances 
and, secondly, by the need to maximise the L-L attractive 
interactions subject to short range repulsions. Thus for 
small M (or equivalently short M-L bonds), the ligands 
will pack around M in a close-packed close geometry 
with triangular or deltahedral faces. Now let the size 
of M (or equivalently, the M-L bond length, d(M-L), 
increase, with the ligands remaining the same size. If 
the molecule is forced to retain its original shape, then 
each L-L distance, d(L-L), increases, with a resultant 
loss of L-L dispersive stabilisation. If the ligand po- 
lyhedron is then allowed to relax, it will adopt the 
geometry which maximises (the number of) attractive 
L-L interactions subject to the short range repulsive 
interaction [6a]. This means that the ligand polyhedron 
relaxes by breaking the L-L edge which allows maximum 

relaxation of the ligand system for minimum loss of 
nearest neighbour contacts. One square face is created 
in the process. 

This process can be readily visualised when one 
realises that the same relaxation is required for the 
insertion of a new vertex (of connectivity four) along 
an edge of the ligand polyhedron to form a new 
polyhedron. For polyhedra whose internal angles are 
less than 180”, the edge that allows most relaxation is 
one which is ‘opposite’ one, or preferably two, vertices 
of lowest connectivity, where connectivity refers to the 
number of nearest neighbours. By opposite we mean 
that when the edge is broken, the one or two lowest 
connectivity vertices are part of the square face, but 
were not previously connected by the broken edge. The 
resulting ligand polyhedron for ML,17 (where 77 denotes 
hole) is a close-(n + 1) vertex polyhedron. These are 
illustrated in Fig. 1. The relaxation to the next closo- 
polyhedron has the additional advantage of reducing 
the longest M-L distances (L of lowest connectivity 
are always furthest from M (see Table 1)). The ML,, 
ligand polyhedron differs from the above picture since 
it is only slightly distorted from the regular icosahedron, 
and so relaxation after expansion will be towards a 
regular icosahedron with a hole. (It should be noted 
that the polyhedral forms adopted by the metal or 
boron atoms cluster compounds [9] are not necessarily 
the same as those adopted by the ligands of complexes 
since the energetic considerations are different.) 

For larger increases in M size or M-L bond length, 
the relaxation can be viewed as the sequential cleavage 
of polyhedral edges by following the sequence in Fig. 
1 for two or more steps so inserting two or more 
interstitial holes. The choice of second, third etc. in- 
sertion point relative to holes already present must be 
the one allowing greatest relaxation. For convenience 
we shall refer to a close-polyhedron with II vertices as 
{n,O}, a nido-polyhedron as {n,- l}, and an aruchno- 
polyhedron as {n,--2}, etc. Thus the hole created in 
going from nido-{n + 1, - l} to aruchno-{n + 2, - 2) may 
not be the same as for cbso-{n + l,O} to nido-(n + 2, - 1). 
For example, one edge of the close-tetrahedron is broken 
to form the butterfly nido-trigonal bipyramid and a 
second edge broken to form the square plane aruchno- 
octahedron rather than the butterfly. This sequence 
may be expressed as (4,O) + (5, - 1) -+ (6, - 2) (Fig. 2). 
Further relaxation to (7, -3) results in a pyramidal 
shape which would be further stabilised by relaxation 
to a square pyramid with equal d(M-L). It should be 
noted, however, that when the number of holes is not 
small relative to IZ, the uniqueness and accuracy of the 
description is lost, and is probably unhelpful. These 
stages are illustrated in Fig. 3. Analogous relaxation 
processes are also illustrated in Fig. 2 for {3,0} and 
{5,0]. 



189 

L 
2 

n=4 n=5 n=6 

n=9 n=lO 

2 6 

n=7 n=8 

6 6 

n=ll n=12 
Fig. 1. MX, geometries for n=&12. The arrows indicate the L-L edge or insertion point that leads to greatest relaxation. The 
open square in each diagram is the interstitial hole resulting from insertion into the previous &so-polyhedron. Vertices are labelled 
consistently from polyhedron to polyhedron and the polygon drawn at each vertex indicates the number of its nearest neighbours. 

TABLE 1. M-L bond lengths for close-ML,, n=3-10 and 12, 
taking the ligand hard sphere radius to be half a unit of length 
and the ligands to be close packed. Subscripts denote the L-L 
connectivity of the ligand 

ML3 
M4 
ML, 
ML, 
ML, 
ML, 
ML, 
MLto 
MI-12 

dz 

0.577 

d3 

0.612 
0.816 

d4 

0.577 
0.707 
0.851 
0.930 
0.995 
0.995 

d, 

0.526 
0.677 
0.764 
0.764 
0.951 

The octagonal {6,0} and trigonal prismatic (9, -3) 
are the commonly expected six-coordination geometries 
[lo]. The ‘expansion’ sequence for ML, is illustrated 
in Fig. 3. Outside the context of this discussion, there 
appears no mention in the literature of the nido-7 
pentagonal bipyramid nor the arachno-8 triangulated 
dodecahedron as possible six-coordinate geometries al- 
though they are obliquely referred to in several dis- 
cussions. The ML, series does not necessarily end at 
the trigonal prism (9, - 3}, but may proceed to (10, - 4) 
etc. However, such structures are only to be expected 
for the very largest cations and the very smallest ligands. 

For seven coordination the close-polyhedron {7,0} is 
the pentagonal bipyramid, (8, - 1) corresponds to the 
capped octahedron (consider the ML, structure of Fig. 
1, and draw a line between the two five-fold vertices 
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Fig. 2. MX, geometries for n = 3,4,5. Solid circles indicate atoms 
and open circles vacant sites resulting from the expansion of the 
ligand polyhedron and subsequent relaxation. 

across the empty vertex, this is then the standard 
representation of a capped octahedron [lo]), and (9, - 2} 
the monocapped trigonal prism. Similarly, for eight 
coordination we would expect the first three members 
of the series for ML, to correspond to the dodecahedron 
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Fig. 3. MX, geometries. Solid circles indicate atoms and open circles vacant sites resulting from the expansion of the ligand polyhedron 

and subsequent relaxation. 

{8,0}, the bicapped trigonal prism (9, - 1) and the square 
antiprism (10, - 2). 

This discussion has direct relevance for geometries 
of molecules where M changes down the periodic table. 
Thus Ni complexes are almost always tetrahedral, but 
Pt ones are often square planar. In practice, intermediate 
geometries such as ‘distorted tetrahedral’ may be ob- 
served (see data in ref. 6a). Similarly, as ligands decrease 
in size, for example, changing I for Br, such changes 
are expected. The most significant importance of these 
ideas, however, is for transition metal complex reactivity, 
especially of close geometries. 

3. Stereochemical changes 

The stereochemical changes - fluxionality and iso- 
merisation - that many inorganic coordination com- 
pounds exhibit has become one of the most widely 
studied phenomena in inorganic chemistry and although 
the mechanisms of some, for example, rearrangement 
processes in five-coordination [ll] or six-coordination 
[7a,b, lo] complexes, are well understood, no simple 
coherent approach to all coordination numbers appears 
to have evolved. By applying the discussion of Section 
2 to rearrangement mechanisms we shall develop an 
approach to this problem which we believe offers a 
more unified view of these fascinating phenomena. 

A close ligand polyhedron {n,O} has the ligands in 
contact, so it cannot rearrange without stretching M-L 
distances. So, imagine the reaction of a close polyhedron 
proceeding by first the M-L bonds stretching, followed 
by relaxation of {n,O} to {n + l,- l} as discussed in 
Section 2. If {n + 1, - 1) can relax back to a ‘new’ {n,O] 
polyhedron - new in the sense that if the atoms could 
be labelled it would be apparent that different atoms 
are in different positions - then ML,, can rearrange 
by a mechanism of simultaneous bond stretching and 
ligand relaxation to a transition state {n + 1, - l}, and 
subsequent relaxation to the new polyhedron. The Berry 
pseudo rotation of trigonal bipyramidal systems is an 

example of such a process [II]. Frequently, however, 
{n+ l,- l} cannot relax to a new {n,O}. In this case, 
further M-L bond stretching and ligand relaxation to 
{n + 2, -2) may be sufficient. The rearrangement of 
tetrahedral complexes via a square planar structure 
[12] is an example of this. Octahedral (or more commonly 
tris-chelate) rearrangements via a trigonal prismatic 
transition state [7a,b, 131 is an example of reaction via 
an {n + 3, - 3) transition state. 

Non-close polyhedra may rearrange via the same 
mechanism as their close analogues. However, before 
drawing such a conclusion, mechanisms proceeding via 
less open ligand geometries must be considered. For 
example, a square planar ML, (6, - 2} may change to 
a (5, - 1) ligand polyhedron with no decrease in M-L 
bond strength only loss of favourable dispersive L-L 
interactions. This is generally energetically less expen- 
sive than bond stretching, so if a (6, -2) polyhedron 
can rearrange via (5, - l} or {4,0} rather than via, say, 
(7, -3) then it will. In this case, however, neither of 
these ligand motions leads smoothly to a new square 
planar structure, so a square planar compound must 
follow the trigonal twist mechanism of its octahedral 
template [8d]. (A mechanism going from (6, - 2) to (4,0} 
could then lead to a new (6, - 2} but not with the same 
vibration.) By way of contrast, a (5, - 2} T-shaped ML 
can rearrange via {3,0} without stretching M-L bond 
lengths. 

Consideration of a limited number of examples led 
us to postulate that rearrangements of close-ML, that 
could proceed via a transition state {n + 1, - 1) are likely 
to be fluxional, and those proceeding via {n +2, -2}, 
{n+3,-3) t b e c. ecome less likely until a bond breaking 
mechanism is more favourable. Similarly, non-close, 
{n,-i},i>O, t t s rut ures will be fluxional if their transition 
states are either {n + 1, -i - l}, so involving only slight 
stretching of the M-L bonds, or {n-k, -i+k} k> 1, 
which involves no M-L bond stretching merely loss of 
L-L attractive interactions. Thus, rearrangement mech- 
anisms for ML, systems can be visualised as proceeding 
in the stages indicated by the geometry distortion 
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schemes of Section 2. A given molecule proceeds as 
far along the scheme as is necessary to reach a geometry 
that can relax to a new product (rather than only back 
to the reactant). In practice, each reaction step may 
involve two or more stages of the Scheme. Thus for 
example the Bailar twist is a concerted mechanism that 
can be visualised using Fig. 3 as occurring in three 
stages to the transition state and three to the product. 
Alternatively, one or more of the stages may in fact 
be steps along the rearrangement pathway (with, for 
example, (8, - 2) being an intermediate). 

If this view of rearrangement mechanisms is correct, 
it must be consistent with the previously derived classical 
symmetry selection rule procedure for reaction mech- 
anisms [14]. In particular, the distortion postulated to 
lead to rearrangement must be a normal coordinate 
for a particular molecular geometry (not necessarily a 
stable species). By this we mean, when mass weighted 
coordinates are used, it uncouples the kinetic and 
potential energies of the system and diagonalises the 
potential energy. Thus at the reactant, thevery beginning 
of the motion towards the next polyhedron must be a 
normal coordinate of the reactant in the usual sense 
of the term. At each subsequent point, the normal 
coordinates must be re-evaluated - the reactant normal 
coordinates will not be appropriate part way towards 
the transition state. However, as the reactant normal 
coordinates will continuously transform into those of 
the transition state, it is generally the case that if the 
route via a particular transition is energetically feasible, 
then the beginning of the distortion from {n,O} must 
be one of the lower energy normal modes of the reactant, 
{n,O}. We have therefore determined the normal modes 
[15] of ML, for n = 4-11, and also the projection of 
the {n,O} to {n + 1, - 1) motion onto each normal mode 
of {n,O}. Although the relative orderings of the normal 
modes vary as a function of the M-L bond strength, 
in each case the mode which resembles the {n,O} to 
{n + 1, - l} motion most closely is one of the three lowest 
energy vibrational normal modes. 

The M-L bond stretch required for each stage in a 
reaction scheme (as opposed to each step) is another 
indication of the energy required for a proposed mech- 
anism. The stretches can be deduced from Table 1, 
where the M-L bond lengths for ML,, are determined 
assuming close-packed hard sphere ligands of radius 
1. Thus, for example, ML, rearranging via a trigonal 
prism (9, -3) requires the M-L bonds to stretch by 
8%. The corresponding volume change, or activation 
volume, assuming the ligands are close packed in both 
reactant and transition state is [,/6r3/2- 2r’/3] where 
I is the reactant M-L distance. We can compare this 
result with an experiment for [Cr(l,lO-phenanthrol- 
ine),13 + and [Cr(2,2’-bipyridyl),13+ which are known 
to react via a twist mechanism. Since r=2.07 A [16] 

for these molecules, and assuming that the ligands take 
up the same volume in the reactant and the transition 
state so that the experimental activation volume is due 
only to changes in the metal-ligating atom part of the 
molecule, the molar activation volume is predicted by 
the AAIM to be 3.0 cm3. The experimental value is 
3.3+0.3 cm3 [17]. 

The utility of our approach for the study of the 
geometry and isomerisation reactions of ML, molecules 
increases with the number of ligands since it enables 
apparently complex geometries to be simply systema- 
tised. For seven coordination, there is no single-stage 
route to a new molecule available: single edge cleavage 
leads to a nidu-8 vertex polyhedron, (8, - l] (see Fig. 
1) which can only relax to a capped octahedron with 
one significantly stretched M-L bond. A further edge 
cleavage is required to give the more favourable arachno- 
tricapped trigonal prism, (9, - 2), which can serve as a 
transition state. Hence the probably concerted ligand 
rearrangement for a pentagonal bipyramid can beviewed 
as taking place by a five stage process: 

{7,0} - (8, - l} - (9, - 2} - (8, - 1)’ - (7,O)’ 

Such a motion corresponds to a soft (i.e. low energy) 
vibrational mode. 

For eight coordination we have a situation similar 
to that found for coordination number five. The parent 
polyhedron is the dodecahedron (8,O). Single edge cleav- 
age takes it to the bicapped trigonal prism, {9,-l}, 
which can clearly serve as a suitable transition state 
geometry since further extension along the same vector 
leads to a new dodecahedron (8,O)‘. Thus rearrangement 
is a two stage concerted process 

{8,0] - (9, - I> - {8,0]’ 

It is interesting to note that, {6,0}, {7,0} and (8,O) all 
proceed via the same polyhedral intermediate, just as 
{3,0}, {4,0} and (5,O) all proceed via the octahedron. 

4. Conclusions 

In summary what we have shown is that there is a 
coherent way of viewing the apparently disparate ge- 
ometries adopted by transition metal complexes both 
at equilibrium and during the course of isomerisation 
reactions. Three factors are important in determining 
the geometry of a system: (i) the short range GL 
repulsion (which can for simplicity be conceptually 
viewed in terms of hard sphere repulsion), (ii) the M-L 
bond lengths, (iii) the longer range L-L attraction due 
to dispersive interactions. If one were to build a tran- 
sition metal complex from component atoms, one would 
therefore first ensure that the ligands are not forced 
so close together that their hard spheres are overlapping, 
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then try to set metal-ligand bond lengths close to the 
value that maximises the bond strength, and finally 
orient the ligands around the metal so that as many 
as possible of the ligand hard spheres touch or nearly 
touch. Although it is the smallest energy contribution, 
the ligand-ligand attraction often has a significant effect 
on the appearance of the complex. When considering 
isomerisation pathways, the L-L interactions become 
even more important as they dictate how the geometry 
of the ligand system relaxes to the change in the bond 
lengths that occur during the reaction. Minimal loss 
of dispersion energy results if the minimum number 
of L-L contacts are broken. Thus the bond stretching/ 
ligand polyhedron relaxation can be viewed as pro- 
ceeding along the stages of Figs. 2 and 3, from the 
starting ligand polyhedron to one where the ligands 
are once more in contact but with longer M-L bond 
lengths. The relaxation can be equivalently viewed as 
the insertion of interstitial holes along the edges of 
the expanded reactant polyhedron that allow maximum 
relaxation. By coupling the AAIM analysis with a normal 
mode analysis one is then in a position to examine 
both concerted and non-concerted rearrangement mech- 
anisms of transition metal complexes. 

For high symmetry {n,O} polyhedra, e.g. the tetra- 
hedron, the octahedron and the cube (and incidentally 
the icosahedron and the pentagonal dodecahedron), 
the distortion towards the nido-{n + 1, - 1) polyhedron 
may be difficult to observe experimentally. Consider, 
for example, an octahedral complex. Since all L-L 
contact distances are equal, distortion may occur along 
any one of the twelve equivalent edges. However, 
because certain experimental methods, for example, X- 
ray analysis, provide only a time-averaged structure, a 
structure with average 0, symmetry may be recorded. 
Vibrational spectroscopy, however, with a much shorter 
time scale, can provide information relevant to the 
proposed distortion towards the n&-pentagonal bi- 
pyramid. For example, the vibrational spectrum of 
[TeX,]‘- is interpreted in terms of large amplitude 
and abnormal frequencies suggesting that the octahedral 
geometry is rather tenuously stable, i.e. the molecule 

is ‘floppy’ [18] and moving, according to our view, 
towards a (7, - l> geometry. For XeF, the geometry of 
the gas-phase molecule is non-octahedral and the species 
is flexible, having a near-zero force constant for one 
of the bending modes of the octahedron, which is again 
consistent with a n&-(7} geometry. 
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